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In the majority of venomous snakes, and in many other reptiles, venom is conveyed from the animal’s

gland to the prey’s tissue through an open groove on the surface of the teeth and not through a tubular

fang. Here we focus on two key aspects of the grooved delivery system: the hydrodynamics of venom as it

interacts with the groove geometry, and the efficiency of the tooth-groove-venom complex as the tooth

penetrates the prey’s tissue. We show that the surface tension of the venom is the driving force underlying

the envenomation dynamics. In so doing, we explain not only the efficacy of the open groove, but also the

prevalence of this mechanism among reptiles.
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Functional bases, clinical consequences, and phylogeny
of envenomation by snakes have been studied extensively.
Nevertheless, the underlying biological physics is poorly
understood. This likely stems from a skewed perspective as
previous literature has concentrated on a minority of ven-
omous snakes (like rattlesnakes [1]) that use tubular fangs
to rapidly inject a pressurized bolus of venom. In the
majority of venomous snakes, and in several other groups
of venomous reptiles, envenomation is a very different
process [2–4]. In these species venom is released with little
or no pressure head, essentially it oozes in the vicinity of
one or more enlarged grooved fangs (Fig. 1) with which the
snake slowly and repeatedly penetrates the prey tissue.
Previous studies [5,6] have shown that, to be effective,
reptilian venom must be introduced below the epidermis
(the surface layer of the organism) and that, as a generality,
the efficacy of envenomation is directly proportional to the
volume and depth of the venom released. Why, then, use a
groove?

Here we offer a biophysical explanation for the impor-
tance of the fang’s groove as a venom conduit. We also
detail how the penetration of prey tissue by the grooved
fang creates a ‘‘venom tube’’ bordered by the topography
of the groove as well as the disrupted tissue of the prey;
cf. Fig. 1(b). The venom tube both effectively extends the
fang’s groove below the epithelium and, through surface
tension in conjunction with non-Newtonian behavior as
detailed below, increases the efficacy of envenomation by
drawing the venom into the prey.

As part of our biophysical explanation of envenomation,
we now address three, related, questions. First, what qual-
ities characterize venom as a fluid? Second, how does the
venom oozing out of the gland ‘‘flow’’ along the fang’s
groove? And third, how does the complex of tooth-groove-
venom behave as the tooth penetrates into the prey’s tis-
sue? By quantifying the venom viscosity ! as a function of
the shear rate, we document that the venom is a non-
Newtonian fluid. We quantify the venom’s surface tension

and show how this surface tension spreads the venom along
the fang’s groove forming a stable composite system be-
tween the venom and the topography of the fang. Both the
venom spreading along the fang’s groove and its penetra-
tion into the target tissue arise through a minimization
of the venom’s surface-tension energy. As Fig. 2 below
shows, the larger the shear tension produced by fang
penetration, the more fluid the venom is. Predicted rates
of venom flow along the groove and into the prey (i.e.,
absorption between 0.1 and 1 s) are similar to what has
been observed during feeding of snakes [7].
To determine surface tension and viscosity, fresh venom

was obtained by milking a western diamondback rattle-
snake (Crotalus atrox) and a red spitting cobra (Naja
pallida). Venom drops were photographed, along with
water droplets, on glass slides and teeth, in order to

FIG. 1 (color online). Scanning electron micrographs showing
the prominent grooves (horizontal arrows) on the fangs of (a) a
banded snake (Bothryum lentiginosum), a lizard eater, and (b) a
mangrove snake (Boiga dendrophila), a generalist feeding on
both birds and lizards. The Boiga specimen was prepared with
the fang imbedded in prey tissue, so only the base of the fang is
visible; the prey tissue has separated slightly from the fang
forming a clear venom tube (vertical arrow).
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determine the contact angle (defined and explained below),
which was approximately 45". Quantification of 30 "l
drops of C. atrox venom and a 50:50 mix of venom and
saliva yielded surface-tension values of 49.5 and
52:2 mN=m, respectively, which are slightly below that
of water (viz., 73 mN=m). The surface-tension quantifica-
tion (sessile-drop technique), as well as the rheological
experiments described below, were all done at 20 "C.

Both the C. atrox venom and (for biological realism) a
50:50 mix of venom and saliva have relatively high vis-
cosities compared towater (cf. Fig. 2), meaning that venom
would flow relatively slowly (# 1 cm=s) over the tooth.
This rate is consistent with what is observed biologically:
snakes with grooved teeth release venom relatively slowly
(with little, or no, pressure head) while holding, and often
repeatedly penetrating, prey with their teeth [11]. This is in
sharp contrast to the rapid pressurized bolus of venom that
is passed by snakes with tubular fangs [8]. As shown in
Fig. 2, the venom is a non-Newtonian fluid (the viscosity !
changes with shear force), the flow rate of which acceler-
ates when the tooth penetrates a prey item, producing
shear.

Measuring the contact angle # precisely is not an easy
task—see Fig. 3(a) for a pictorial definition—because it is
strongly influenced by factors such as the presence of
impurities or small surface features which amply occur in
biological reality. Fortunately, it is not necessary to know
the exact value of the contact angle but only whether the
angle is much smaller than 90", much larger than 90", or
just about 90". In the first case, the fluid tends to spread
over a surface, and in the latter case it tends to contract and
form a spherical droplet. Snake venom clearly belongs to
the first category. That is, a venom’s contact angle is
comparable with that of water (being much smaller than
90") but its viscosity is 2 orders of magnitude higher.
Hence snake venom flows roughly 500 times more slowly

than water [9] but, as it turns out, this flow rate is fast
enough.
Now we know both viscosity and surface tension we can

turn to the question of how venom distributes itself in the
groove once it has been released by the venom gland. In
Fig. 3(a) we see a drop in equilibrium. Forces between
molecules hold the liquid together and influence the shape
of the drop. The molecules on the surface of the drop are
acted upon by forces from the inside of the drop and
different ones (or none) on the other side. A droplet tends
to minimize its surface to establish a force equilibrium, a
behavior that can be described quantitatively by introduc-
ing a potential energy, the surface energy, which is propor-
tional to the size of the surface A:E ¼ $jAj. The
proportionality factor $ has dimension N=m and is there-
fore called the surface tension, a material constant.
For the situation of Fig. 3(a) we have three kinds of

surface tension, $, $SV, and $SL, indicating the interaction
at the surfaces venom-air, solid-vapor, and solid-liquid (or
tooth-venom). All three are actually vectors but will be
treated as scalar substitutes. Because of momentary equi-
librium, their sum vanishes so that

$ cos#þ $SL ¼ $SV: (1)

We set $ ¼ 1 [or divide (1) by $]. Since # & 45" and,
effectively, $SV ¼ 0 we end up with cos# ¼ !$SL. That
is, $SL < 0 and the interface between venom and tooth
effectively tends to get maximized.
The groove in the fang is taken to be translationally

invariant (for the purpose of a venom drop getting dis-
persed) with a preferred axis along the x axis. Accordingly,
we need only specify the intersection as indicated in
Fig. 3(b) where the groove’s bottom is given by a function
gðyÞ while the venom surface is represented by a function
sðx; yÞ so that sðx; yÞwill depend not only on y but also on x
as we move along the tooth. The same in principle holds for
g but in practice this is not relevant, as detailed below. So
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FIG. 2 (color online). Graph of viscosity as a function of shear
rate for venom (blue trace) and a 50:50 mix of venom and saliva
(monotonically decreasing, red trace), double-logarithmic scale.
Both samples show a distinct shear-thinning behavior, which is
typical for non-Newtonian polymer solutions. For comparison,
water (horizontal, dashed black line) is a Newtonian fluid where
the viscosity does not depend on the applied shear rate.

FIG. 3 (color online). (a) Schematic of the surface tensions
acting on a venom droplet; in principle they are vectors. The
contact angle # is formed through the interactions of two surface
tensions, one between the venom and the air ($), and the other
($SL) between the venom and the substrate, here the fang. The
third surface tension $SV between substrate and venom vapor
effectively vanishes and we choose units so that $ ¼ 1. (b) A
venom droplet in a groove parallel to the x axis, which is
orthogonal to the plane, is bounded by the function gðyÞ and
by the venom-air surface sðx; yÞ.
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the venom is contained in a volume bounded ‘‘below’’ by g
and ‘‘above’’ by s. This allows us to specify a minimization
problem.

The energy functional Esurface that is to be minimized is
the total energy incorporating all the surface tensions (with
$ ¼ 1), viz., the surface integral

Esurface ¼Evenom-airþEvenom-tooth ¼
Z
A
dxdy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2xþ s2y

q

þ$SL

Z
A
dxdy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg2xþg2y

q
: (2)

Here, A is the region enclosed by the projection of the
venom-tooth boundary onto the (x, y) plane that defines our
integration boundary [see Fig. 3(b)] while the lower index
x in, e.g., sx means a partial derivative with respect to x and
analogously for y. Furthermore, in minimizing (2) the total
volume of the venom is conserved and thus so is

Z
A

dxdy½sðx; yÞ ! gðx; yÞ* ¼ Cst: (3)

The above minimization problem is rather intricate in
that the venom can float freely in the groove and hence the
boundary @A of the region A is free to move as well.
Figure 4(a) shows this is exactly what happens. To obtain
solutions to the minimization problem (2) under the con-
straint (3) with free boundary @A we have taken advan-
tage of special software called SURFACE EVOLVER [10].
SURFACE EVOLVER discretizes the droplet surface via trian-
gularization and adjusts the surface shape stepwise to
minimize surface energy numerically. To model the groove
more precisely it was built up as a combination of a convex
and a concave arc with radius R1 and R2, respectively, and
an angle % to locate the transition between convex and
concave; cf. Fig. 4(c).

In general, venom oozes out of the gland. As shown in
Fig. 4(a), a venom droplet placed on different dental sur-
faces always moves ‘‘down’’ into the groove even though
gravity has been neglected here since for a realistic snake

tooth the R’s are smaller than the capillary length &c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$=ð'gÞ

p
[9]. Phrased differently, a venom drop is

stretched in the direction parallel to the groove and con-
tracts in the orthogonal direction. That is why it is
advantageous to model the two-dimensional intersection
generating the three-dimensional groove by means of three
curves, two convex ones on the upper left and right and a
central concave one; varying the radii of the curves
changes the width of the groove, whereas varying the angle
% [see Fig. 4(c)] of the two positions where the three
curves meet alters the depth of the groove. The contours
of the groove allow maximization of the substrate contact
with the venom droplet while minimizing the surface area
of the droplet exposed to the air; as such, the grooved
configuration allows the venom droplet to also achieve
minimal (negative) surface energy (Evenom-tooth), respecting
the constant-volume constraint (3). The results of these
simulations are consistent in that venom droplets flow over

the surface of the tooth so as to move into the groove, a
displacement that is more pronounced with increasing
groove depth, as indicated clearly in Fig. 4(b).
We now focus on three key findings. First, as noted

above, once deposited in the groove by the venom gland,
venom is attracted by a convex or convex-concave groove
and drawn into it. For snakes feeding mainly on birds, % is
indeed rather small, say % ¼ !20" in Figs. 1(b) and 4(b),
so that feathers hardly wipe off the venom. Second, the
venom spreads along the groove at an approximate rate
V+ ¼ $=! [9], where $ is the surface tension and ! is the
venom viscosity as shown in Fig. 2. For water this rate is as
high as 70 m=s, while for snake venom it is in the range of
1 cm=s, agreeing with biological reality.

FIG. 4 (color online). Results of a numerical minimization of
(2) under the constraint (3) with free boundary @A in which the
surface area of the venom is modeled by a series of small
intersecting triangles (triangularization) and the tooth as a trans-
lation of intersecting convex and concave curves. (a) A venom
droplet flows over the surface of the tooth in order to enter the
groove. Each stage in this sequence confers a lower surface-
tension energy as given by (2). (b) Once in the groove, venom
quickly spreads out (i.e., flows) along the length of the groove;
this spread is directly related to a groove’s contour and depth,
with the final state shown for three different depths. We see the
final state in dependence upon the groove angle %; cf. Fig. 1.
(c) Grooves are modeled by two arcs of radius R1 and R2 (here
R1 ¼ R2); the angle of intersection % indicating the direction of
the transition between convex and concave arcs determines a
groove’s shape and depth.
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With growing depth of the canal there is a certain point
where it is better for a truly big drop to—so to speak—
completely spread out along the canal independently of the
drop volume. This happens when the contact area is much
bigger than the free drop surface so that the sum of the
two surface energies becomes negative at every drop vol-
ume. Estimating what is going to happen on the basis of
cos# ¼ !$SL and (2) we then require, respecting (3),

Esurface ¼ Evenom-air þ Evenom-tooth

¼ jAsurfacej! cos#jAcontactj< 0: (4)

Here,Asurface is the two-dimensional venom-air manifold,
Acontact is the contact area between venom and tooth,
another manifold, and # is the contact angle of Fig. 3.
We see from Fig. 4 that the inequality (4) is indeed the
driving principle as % decreases. The larger the contact
angle # (cos0" ¼ 1 and cos90" ¼ 0) the deeper a groove
has to be to realize the above inequality. For comparison,
on a flat (nongrooved) tooth we always have
jAsurfacej=jAcontactj> 1. The venom-spreading function
of the groove is a consequence of the surface tension of
the venom as represented by cos#.

Third, and finally, what happens if the system of grooved
tooth and venom covering the groove is pushed into prey
tissue [12]? Groove and tissue then form a tubular con-
struct through which venom is soaked in so as to obey
surface tension. More precisely, the exposed wound, like
the groove on the surface of the tooth, represents an
increased surface area that minimizes the surface energy
of the venom and functions to draw the venom in.
Following tooth penetration, the combination of denti-
tional groove and the (disrupted) skin of the target will
form what is effectively a venom tube extending into the
target tissue.

As shown in Fig. 5, because of its surface tension venom
on the surface of the tooth will be pulled into the groove
and, rapidly, down the venom tube into the target tissue

with hardly any spillover. The characteristic time (cap
required for this envenomation can be estimated by the
upper bound (cap ¼ 8!H='ga2 [13], where ! is the
venom viscosity, ' the venom density, g is the gravity
constant, and a and H are the tube’s diameter and length,
respectively. Substituting the values for ! (cf. Fig. 2) and '
that we have determined and using known groove dimen-
sions [4], we find envenomation times of less than 1 s, as in
Fig. 5 and again in agreement with biological practice.
In summary, we have presented experimental results on

snake venom’s viscosity and surface tension and analyzed
the ensuing consequences. On the basis of the convex-
concave groove geometry we can explain how and why a
groove—which most commonly occurs in nature—inserts
venom into prey. Surface tension is the driving force
dominating this way of envenomation. The underlying
biophysics nicely explains two key aspects of venom in-
jection through a groove. First, the shape of the groove and
the stability of venom in the groove awaiting prey. And,
second, the speed at which venom is drawn into the target
along the tube formed by the inserted fang’s groove and the
prey tissue.
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FIG. 5 (color online). Sequential photographs (covering a time
span of less than 400 ms) showing a drop of venom from
Crotalus atrox that was placed over a puncture wound on the
lateral surface of an euthanized Anolis lizard. The venom droplet
changes in shape and quickly penetrates into the tissue of the
lizard.
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